Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Diagnostics (Basel) ; 13(10)2023 May 19.
Article in English | MEDLINE | ID: covidwho-20233941

ABSTRACT

COVID-19 is an infectious disease caused by the deadly virus SARS-CoV-2 that affects the lung of the patient. Different symptoms, including fever, muscle pain and respiratory syndrome, can be identified in COVID-19-affected patients. The disease needs to be diagnosed in a timely manner, otherwise the lung infection can turn into a severe form and the patient's life may be in danger. In this work, an ensemble deep learning-based technique is proposed for COVID-19 detection that can classify the disease with high accuracy, efficiency, and reliability. A weighted average ensemble (WAE) prediction was performed by combining three CNN models, namely Xception, VGG19 and ResNet50V2, where 97.25% and 94.10% accuracy was achieved for binary and multiclass classification, respectively. To accurately detect the disease, different test methods have been proposed and developed, some of which are even being used in real-time situations. RT-PCR is one of the most successful COVID-19 detection methods, and is being used worldwide with high accuracy and sensitivity. However, complexity and time-consuming manual processes are limitations of this method. To make the detection process automated, researchers across the world have started to use deep learning to detect COVID-19 applied on medical imaging. Although most of the existing systems offer high accuracy, different limitations, including high variance, overfitting and generalization errors, can be found that can degrade the system performance. Some of the reasons behind those limitations are a lack of reliable data resources, missing preprocessing techniques, a lack of proper model selection, etc., which eventually create reliability issues. Reliability is an important factor for any healthcare system. Here, transfer learning with better preprocessing techniques applied on two benchmark datasets makes the work more reliable. The weighted average ensemble technique with hyperparameter tuning ensures better accuracy than using a randomly selected single CNN model.

2.
Cardiometry ; - (25):1433-1435, 2022.
Article in English | ProQuest Central | ID: covidwho-2252929
3.
Electronics ; 11(20):3354, 2022.
Article in English | MDPI | ID: covidwho-2071314

ABSTRACT

Online learning systems have expanded significantly over the last couple of years. Massive Open Online Courses (MOOCs) have become a major trend on the internet. During the COVID-19 pandemic, the count of learner enrolment has increased in various MOOC platforms like Coursera, Udemy, Swayam, Udacity, FutureLearn, NPTEL, Khan Academy, EdX, SWAYAM, etc. These platforms offer multiple courses, and it is difficult for online learners to choose a suitable course as per their requirements. In order to improve this e-learning education environment and to reduce the drop-out ratio, online learners will need a system in which all the platform's offered courses are compared and recommended, according to the needs of the learner. So, there is a need to create a learner's profile to analyze so many platforms in order to fulfill the educational needs of the learners. To develop a profile of a learner or user, three input parameters are considered: personal details, educational details, and knowledge level. Along with these parameters, learners can also create their user profiles by uploading their CVs or LinkedIn. In this paper, the major innovation is to implement a user interface-based intelligent profiling system for enhancing user adaptation in which feedback will be received from a user and courses will be recommended according to user/learners' preferences.

4.
RMD Open ; 8(2)2022 09.
Article in English | MEDLINE | ID: covidwho-2029524

ABSTRACT

OBJECTIVE: We investigated prolonged COVID-19 symptom duration, defined as lasting 28 days or longer, among people with systemic autoimmune rheumatic diseases (SARDs). METHODS: We analysed data from the COVID-19 Global Rheumatology Alliance Vaccine Survey (2 April 2021-15 October 2021) to identify people with SARDs reporting test-confirmed COVID-19. Participants reported COVID-19 severity and symptom duration, sociodemographics and clinical characteristics. We reported the proportion experiencing prolonged symptom duration and investigated associations with baseline characteristics using logistic regression. RESULTS: We identified 441 respondents with SARDs and COVID-19 (mean age 48.2 years, 83.7% female, 39.5% rheumatoid arthritis). The median COVID-19 symptom duration was 15 days (IQR 7, 25). Overall, 107 (24.2%) respondents had prolonged symptom duration (≥28 days); 42/429 (9.8%) reported symptoms lasting ≥90 days. Factors associated with higher odds of prolonged symptom duration included: hospitalisation for COVID-19 vs not hospitalised and mild acute symptoms (age-adjusted OR (aOR) 6.49, 95% CI 3.03 to 14.1), comorbidity count (aOR 1.11 per comorbidity, 95% CI 1.02 to 1.21) and osteoarthritis (aOR 2.11, 95% CI 1.01 to 4.27). COVID-19 onset in 2021 vs June 2020 or earlier was associated with lower odds of prolonged symptom duration (aOR 0.42, 95% CI 0.21 to 0.81). CONCLUSION: Most people with SARDs had complete symptom resolution by day 15 after COVID-19 onset. However, about 1 in 4 experienced COVID-19 symptom duration 28 days or longer; 1 in 10 experienced symptoms 90 days or longer. Future studies are needed to investigate the possible relationships between immunomodulating medications, SARD type/flare, vaccine doses and novel viral variants with prolonged COVID-19 symptoms and other postacute sequelae of COVID-19 among people with SARDs.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Rheumatology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Male , Middle Aged , Surveys and Questionnaires
5.
Electronics ; 11(4):566, 2022.
Article in English | MDPI | ID: covidwho-1686658

ABSTRACT

The present technological era significantly makes use of Internet-of-Things (IoT) devices for offering and implementing healthcare services. Post COVID-19, the future of the healthcare system is highly reliant upon the inculcation of Artificial-Intelligence (AI) mechanisms in its day-to-day procedures, and this is realized in its implementation using sensor-enabled smart and intelligent IoT devices for providing extensive care to patients relative to the symmetric concept. The offerings of such AI-enabled services include handling the huge amount of data processed and sensed by smart medical sensors without compromising the performance parameters, such as the response time, latency, availability, cost and processing time. This has resulted in a need to balance the load of the smart operational devices to avoid any failure of responsiveness. Thus, in this paper, a fog-based framework is proposed that can balance the load among fog nodes for handling the challenging communication and processing requirements of intelligent real-time applications.

7.
Vaccines (Basel) ; 9(11)2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1481052

ABSTRACT

The COVID-19 pandemic has profoundly affected almost all facets of peoples' lives, various economic areas and regions of the world. In such a situation implementation of a vaccination can be viewed as essential but its success will be dependent on availability and transparency in the distribution process that will be shared among the stakeholders. Various distributed ledgers (DLTs) such as blockchain provide an open, public, immutable system that has numerous applications due the mentioned abilities. In this paper the authors have proposed a solution based on blockchain to increase the security and transparency in the tracing of COVID-19 vaccination vials. Smart contracts have been developed to monitor the supply, distribution of vaccination vials. The proposed solution will help to generate a tamper-proof and secure environment for the distribution of COVID-19 vaccination vials. Proof of delivery is used as a consensus mechanism for the proposed solution. A feedback feature is also implemented in order to track the vials lot in case of any side effect cause to the patient. The authors have implemented and tested the proposed solution using Ethereum test network, RinkeyBy, MetaMask, one clicks DApp. The proposed solution shows promising results in terms of throughput and scalability.

8.
Diagnostics (Basel) ; 11(9)2021 Sep 21.
Article in English | MEDLINE | ID: covidwho-1430808

ABSTRACT

The novel coronavirus (nCoV-2019) is responsible for the acute respiratory disease in humans known as COVID-19. This infection was found in the Wuhan and Hubei provinces of China in the month of December 2019, after which it spread all over the world. By March, 2020, this epidemic had spread to about 117 countries and its different variants continue to disturb human life all over the world, causing great damage to the economy. Through this paper, we have attempted to identify and predict the novel coronavirus from influenza-A viral cases and healthy patients without infection through applying deep learning technology over patient pulmonary computed tomography (CT) images, as well as by the model that has been evaluated. The CT image data used under this method has been collected from various radiopedia data from online sources with a total of 548 CT images, of which 232 are from 12 patients infected with COVID-19, 186 from 17 patients with influenza A virus, and 130 are from 15 healthy candidates without infection. From the results of examination of the reference data determined from the point of view of CT imaging cases in general, the accuracy of the proposed model is 79.39%. Thus, this deep learning model will help in establishing early screening of COVID-19 patients and thus prove to be an analytically robust method for clinical experts.

9.
RMD Open ; 7(3)2021 09.
Article in English | MEDLINE | ID: covidwho-1398725

ABSTRACT

BACKGROUND: We describe the early experiences of adults with systemic rheumatic disease who received the COVID-19 vaccine. METHODS: From 2 April to 30 April 2021, we conducted an online, international survey of adults with systemic rheumatic disease who received COVID-19 vaccination. We collected patient-reported data on clinician communication, beliefs and intent about discontinuing disease-modifying antirheumatic drugs (DMARDs) around the time of vaccination, and patient-reported adverse events after vaccination. RESULTS: We analysed 2860 adults with systemic rheumatic diseases who received COVID-19 vaccination (mean age 55.3 years, 86.7% female, 86.3% white). Types of COVID-19 vaccines were Pfizer-BioNTech (53.2%), Oxford/AstraZeneca (22.6%), Moderna (21.3%), Janssen/Johnson & Johnson (1.7%) and others (1.2%). The most common rheumatic disease was rheumatoid arthritis (42.3%), and 81.2% of respondents were on a DMARD. The majority (81.9%) reported communicating with clinicians about vaccination. Most (66.9%) were willing to temporarily discontinue DMARDs to improve vaccine efficacy, although many (44.3%) were concerned about rheumatic disease flares. After vaccination, the most reported patient-reported adverse events were fatigue/somnolence (33.4%), headache (27.7%), muscle/joint pains (22.8%) and fever/chills (19.9%). Rheumatic disease flares that required medication changes occurred in 4.6%. CONCLUSION: Among adults with systemic rheumatic disease who received COVID-19 vaccination, patient-reported adverse events were typical of those reported in the general population. Most patients were willing to temporarily discontinue DMARDs to improve vaccine efficacy. The relatively low frequency of rheumatic disease flare requiring medications was reassuring.


Subject(s)
COVID-19 , Rheumatic Diseases , Rheumatology , Adult , COVID-19 Vaccines , Female , Humans , Male , Middle Aged , Rheumatic Diseases/drug therapy , SARS-CoV-2 , Surveys and Questionnaires , Vaccination
10.
J Healthc Eng ; 2021: 5513679, 2021.
Article in English | MEDLINE | ID: covidwho-1286755

ABSTRACT

The world is experiencing an unprecedented crisis due to the coronavirus disease (COVID-19) outbreak that has affected nearly 216 countries and territories across the globe. Since the pandemic outbreak, there is a growing interest in computational model-based diagnostic technologies to support the screening and diagnosis of COVID-19 cases using medical imaging such as chest X-ray (CXR) scans. It is discovered in initial studies that patients infected with COVID-19 show abnormalities in their CXR images that represent specific radiological patterns. Still, detection of these patterns is challenging and time-consuming even for skilled radiologists. In this study, we propose a novel convolutional neural network- (CNN-) based deep learning fusion framework using the transfer learning concept where parameters (weights) from different models are combined into a single model to extract features from images which are then fed to a custom classifier for prediction. We use gradient-weighted class activation mapping to visualize the infected areas of CXR images. Furthermore, we provide feature representation through visualization to gain a deeper understanding of the class separability of the studied models with respect to COVID-19 detection. Cross-validation studies are used to assess the performance of the proposed models using open-access datasets containing healthy and both COVID-19 and other pneumonia infected CXR images. Evaluation results show that the best performing fusion model can attain a classification accuracy of 95.49% with a high level of sensitivity and specificity.


Subject(s)
COVID-19/diagnostic imaging , Deep Learning , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/methods , Humans , Lung/diagnostic imaging , SARS-CoV-2 , Sensitivity and Specificity
11.
Mathematical Problems in Engineering ; : 1-8, 2021.
Article in English | Academic Search Complete | ID: covidwho-1238615

ABSTRACT

The COVID-19 pandemic has wreaked havoc in the daily life of human beings and devastated many economies worldwide, claiming millions of lives so far. Studies on COVID-19 have shown that older adults and people with a history of various medical issues, specifically prior cases of pneumonia, are at a higher risk of developing severe complications from COVID-19. As pneumonia is a common type of infection that spreads in the lungs, doctors usually perform chest X-ray to identify the infected regions of the lungs. In this study, machine learning tools such as LabelBinarizer are used to perform one-hot encoding on the labeled chest X-ray images and transform them into categorical form using Python's to_categorical tool. Subsequently, various deep learning features such as convolutional neural network (CNN), VGG16, AveragePooling2D, dropout, flatten, dense, and input are used to build a detection model. Adam is used as an optimizer, which can be further applied to predict pneumonia in COVID-19 patients. The model predicted pneumonia with an average accuracy of 91.69%, sensitivity of 95.92%, and specificity of 100%. The model also efficiently reduces training loss and increases accuracy. [ABSTRACT FROM AUTHOR] Copyright of Mathematical Problems in Engineering is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

SELECTION OF CITATIONS
SEARCH DETAIL